
Slendr simulations
Mark Ravinet

Introduction - slendr

slendr is a recently developed and extensively well-managed R package that acts as a front
end for demographic simulations with both msprime and SLiM. It massively simplifies the
process of running these programs, making them easy to interface with via R - so if you’re not
great at python (like me!) you can easily use R instead. It is also very flexible and because it
is built on top of the extremely efficient simulation programs, it is very fast and lightweight.

Much of the information in this tutorial is based on the original slendr](https://www.slendr.net/)
tutorial docs - I would strongly recommend referring to these as they are the definitive source
for learning how to start to using the package.

Setting up

First we need to load the packages we will need for this session. They have already been
installed, so this will not take long.

library(slendr)
library(tidyverse)

Note that if you install slendr on your own machine, you will need it to setup all the back-end
it uses to interact with python etc. We will not do this today because it is already configured
for you. However to ensure you know how to do this, you simply run

setup_env()

Even if slendr is setup, it is always a good idea to initiate the environment, to ensure every-
thing is working properly ahead of analyses. Do this like so:

init_env()

Now we’re ready to begin simulating!

1

https://www.slendr.net/

A simple non-spatial simulation with two populations

slendr allows you to combine some simple and logically named R functions into a complex
demographic model. The easiest way to learn how to do this is to simply use these functions!
Here we will simulate two populations. The second splits from the first 30,000 generations
ago.

Population a with 30,000 individuals, arising 50000 generations ago
a <- population("a", time = 50000, N = 30000)

Population b with 15,000 individuals, arising 30,000 generations ago
b <- population("b", parent = a, time = 30000, N = 15000)

Be sure to check what these populations look like in the R environment. Just call them as
objects to see.

Since we are keeping this model very simple in order to learn, all we need to do next is compile
the model - all components are combined (i.e. pop size etc) into a single R object.

model <- compile_model(
populations = list(a, b),
generation_time = 1,
direction = "backward",

)

Note that here we specify the direction of this model is “backwards” - i.e. we are performing
a coalescent (backwards-in-time) simulation.

One really nice feature of slendr is that it allows you to plot the model to ensure you have
specified it correctly.

plot_model(model)

If everything looks as it should, we are ready to begin simulating.

Running a simulation

Next up, we need to set our sampling scheme. Here we will take 30 individuals from each of
our two populations:

samples <- schedule_sampling(model, times = 0, list(a, 30), list(b, 30))

2

Note that this function is called schedule_sampling - this is because it allows you to set the
timing of sampling (i.e. you can sample at different temporal points across the model) and
also the location - actually spatially if you wish. But more on that later.

With this setup, we can run the simulation. We will use msprime because this is a coalescent
simulation over many thousands of generations and therefore it is much more efficient and
fast.

ts <- msprime(model, samples = samples, sequence_length = 1000, recombination_rate = 0)

This should only take a few seconds. Note we have simulated a 1000 bp seuqence here with
no recombination, but we could easily alter this if we wanted to. Next we should take a look
at the simulation output.

ts

So far this doesn’t show a great deal, other than the fact that it is a tree-sequence stored
temporarily on our computer. To get at what the simulation actually shows, we need to
process it.

Processing simulations - a simple example

Right now our simulation output is a tree sequence of 60 individuals, 30 from population a
and 30 from population b. But we might want to calculate some population genetic statistics
on this dataset. So here work towards calculating FST.

First of all, we need to set up our populations - i.e. let the pipeline know which individuals
are in each population. This is easy enough to do with built in functions and some tidyR.

a_pop <- ts_samples(ts) %>% filter(pop == a) %>% .$name
b_pop <- ts_samples(ts) %>% filter(pop == b) %>% .$name

Next we need to add mutations to our tree sequence. One of the reasons msprime is so fast
is that it records only the tree sequence or genealogy - mutations can be added after the fact
in order to ensure the simulation is extremely efficient. Here we will add simulations using a
basic SNP mutation rate.

ts_m <- ts_mutate(ts, mutation_rate = 1*10^-4)

Now with mutations added and our populations defined, we can use the tskit functions (all
denoted in the package by starting with ts_) to calculate FST. This is extremly fast and there
are a large number of different functions to calculate different statistics.

3

ts_fst(ts_m, sample_sets = list(a = a_pop, b = b_pop))

We can also calculate diversity using the ts_diversity function - nb this is per site - to get
pi for the sequence, you would need to divide this value by the length (1000 in this case).

ts_diversity(ts_m, sample_sets = list(a = a_pop, b = b_pop),
mode = "site")

So there we have it - two population genetic statistic estimates for a simple 2-population
model, all calculated in a single R framework at high speed. If we placed all the commands
we used together in an single R script, we could have run this all in seconds, using very little
hard drive space.

A simple simulation pipeline

Running a single simulation is useful for learning but it isn’t that helpful as a standalone tool.
Instead, we can combine the code we’ve learned to examine how the variaton in population
parameters might influence the statistics we calculate. Here we will run the model we created
above for different population sizes for population B (from 1000 to 15000) - how does it alter
our estimate of FST?

This code might look complex - but it is almost everything we covered above!

set our sequence to simulate across
pop_sizes <- seq(1000, 15000, by = 1000)

run our model within an sapply command
fst_i <- sapply(pop_sizes, function(x){
set the sampling scheme
samples <- schedule_sampling(model, times = 0, list(a, 30), list(b, 30))
Population a
a <- population("a", time = 50000, N = 30000)
Population b
b <- population("b", parent = a, time = 30000, N = x)

compile model
model <- compile_model(

populations = list(a, b),
generation_time = 1,
direction = "backward",

)
run the model

4

ts <- msprime(model, samples = samples, sequence_length = 1000, recombination_rate = 0)
add the mutations
ts_m <- ts_mutate(ts, mutation_rate = 1*10^-4)
set the populations
a_pop <- ts_samples(ts) %>% filter(pop == a) %>% .$name
b_pop <- ts_samples(ts) %>% filter(pop == b) %>% .$name
calculate fst
y <- ts_fst(ts_m, sample_sets = list(a = a_pop, b = b_pop))
y$Fst

})

We can then combine our results into a data.frame and plot the results using ggplot to see
how they vary across the parameters.

create a data.frame or tibble
sims <- as_tibble(data.frame(pop_sizes = pop_sizes, fst = fst_i))

plot the output
ggplot(sims, aes(pop_sizes, fst)) + geom_point() + geom_line()

Quite clearly from this simple simulation we can see that as the populations size of B increases,
so does the magnitude of FST between the two populations.

Adding to the model: gene flow

The model we have been using so far is very simple - it is basically a 2-deme isolation model.
But what if we want to add gene flow between our two populations? We can do this very
easily using the gene_flow function.

gf <-
list(gene_flow(from = a, to = b, rate = 0.2, start = 10000, end = 0),

gene_flow(from = b, to = a, rate = 0.2, start = 10000, end = 0)
)

Here we have ensured that we are simulating gene flow that is symmetric between our two
populations at a rate of 0.2 between populations. This starts 10,000 generations in the past
and continues until the present day. We have defined these two events in and combined them
into a list called gf

Next we compile our model, but this time include a gene flow term.

5

model <- compile_model(
populations = list(a, b),
gene_flow = gf,
generation_time = 1,
direction = "backward",

)

And as before, we can plot the model to see what it looks like:

plot_model(model)

As before, we can run our model and see how it alters our estimates of FST and diversity.
We need to rerun our model, populate it with mutations, define our populations and then
calculate the statistics.

run the model
ts <- msprime(model, samples = samples, sequence_length = 1000, recombination_rate = 0)
add the mutations
ts_m <- ts_mutate(ts, mutation_rate = 1*10^-4)
set the populations
a_pop <- ts_samples(ts) %>% filter(pop == a) %>% .$name
b_pop <- ts_samples(ts) %>% filter(pop == b) %>% .$name
calculate fst
ts_fst(ts_m, sample_sets = list(a = a_pop, b = b_pop))
calculate diversity
ts_diversity(ts_m, sample_sets = list(a = a_pop, b = b_pop),

mode = "site")

Yet again, a single value is interesting but it doesn’t tell us too much. So we will do what
we did previously - rerunning our model but altering the population size of population B.
However, this time we will see how gene flow influences our inference!

set our sequence to simulate across
pop_sizes <- seq(1000, 15000, by = 1000)

run our model within an sapply command
fst_g <- sapply(pop_sizes, function(x){
set the sampling scheme
samples <- schedule_sampling(model, times = 0, list(a, 30), list(b, 30))
Population a
a <- population("a", time = 50000, N = 30000)
Population b

6

b <- population("b", parent = a, time = 30000, N = x)

compile model - note the inclusion of gene flow
model <- compile_model(
populations = list(a, b),
gene_flow = gf,
generation_time = 1,
direction = "backward",

)

run the model
ts <- msprime(model, samples = samples, sequence_length = 1000, recombination_rate = 0)
add the mutations
ts_m <- ts_mutate(ts, mutation_rate = 1*10^-4)
set the populations
a_pop <- ts_samples(ts) %>% filter(pop == a) %>% .$name
b_pop <- ts_samples(ts) %>% filter(pop == b) %>% .$name
calculate fst
y <- ts_fst(ts_m, sample_sets = list(a = a_pop, b = b_pop))
y$Fst

})

Now we can add the output of the simulations from this run to our previous simulations (those
without gene flow) and see the difference

combine everything into a tibble
sims <- as_tibble(data.frame(sims, fst_g))
alter names! you will see why shortly
colnames(sims) <- c("pop_sizes", "isolation", "gene_flow")
pivot to allow easy plotting
sims_p <- pivot_longer(sims, -pop_sizes, names_to = "model", values_to = "fst")
plot the output
ggplot(sims_p, aes(pop_sizes, fst, colour = model)) + geom_point() + geom_line()

This shows that changing the population size of b has the same result in both models (i.e. FST
decreases with increasing pop size) but that FST is lower in the gene flow model - as we would
expect!

Adding to the model: resizing a population

As well as gene flow events, we can also resize populations so that they experience bottlenecks
or growth over time. Yet again, slendr makes this very straightforward. All we need to do is

7

pipe our population declaration to a resize function when we declare populations.

Population a with 30,000 individuals, arising 50000 generations ago
a <- population("a", time = 50000, N = 30000)

Population b with 15,000 individuals, arising 30,000 generations ago
b <- population("b", parent = a, time = 30000, N = 15000) %>%
resize(N = 2000, how = "step", time = 5000, end = 0)

Remember because we are working with coalescent models, we are working backwards in time.
So here we set population b to start with a population size of 2000 at time 0 and this then
increases to the ancestral population size 5000 generations in the past. Importantly we set the
how for this resize to step - i.e. it will just change suddenly.

Then we need to just declare our model again. For simplicity here, we’ll do this without gene
flow.

model <- compile_model(
populations = list(a, b),
generation_time = 1,
direction = "backward",

)

Then we can plot it to see how this looks!

plot_model(model)

And what if we had set this to happen exponentially, rather than a sudden step?

Population a with 30,000 individuals, arising 50000 generations ago
a <- population("a", time = 50000, N = 30000)

Population b with 15,000 individuals, arising 30,000 generations ago
b <- population("b", parent = a, time = 30000, N = 15000) %>%
resize(N = 2000, how = "exponential", time = 5000, end = 0)

recompile the model
model <- compile_model(
populations = list(a, b),
generation_time = 1,
direction = "backward",

)

8

plot the model
plot_model(model)

We won’t include the resizing in our simulation pipeline above because next we will try to
develop a simple spatial simulation - this will be a very useful tool for landscape genomics!

Spatial models

So far, our models have all been relatively basic with no spatial context. But what if adding
a spatial context helped make them more realistic? This is a very difficult and complex topic
but it is the main motivation behind the development of slendr - again another reason to
refer to its excellent and extensive website.

Setting up the spatial context

We will try to take our basic model and put it in a spatial context in order to get a flavour of
the kind of things you can do with slendr. The very first thing we will do is define a map that
we will use - we use the world function to do this - and we simply set the longitude (xrange)
and latitude (yrange) to do this.

map <- world(
xrange = c(-13, 70), # min-max longitude
yrange = c(18, 65), # min-max latitude
crs = "EPSG:3035" # coordinate reference system (CRS) for West Eurasia

)

With this set, we can then plot the map using the plot_map function from slendr to make
an easy map as a background for simulations.

plot_map(map)

Next we will create two regions on our map - one over the UK, the other over Europe.

anatolia
anatolia <- region(
"Anatolia", map,
polygon = list(c(28, 35), c(40, 35), c(42, 40),

c(30, 43), c(27, 40), c(25, 38))
)
europe

9

https://www.slendr.net/

europe <- region(
"Europe", map,
polygon = list(

c(-10, 35), c(-5, 36), c(10, 38), c(20, 35), c(23, 35),
c(30, 45), c(20, 52), c(0, 50), c(-10, 48)

)
)
plot_map(anatolia, europe)

So here we have a map with two polygons imposed on the top that define regions. With this
spatial structure set up, we can now start to build a model that is anchored in this geographical
context.

Building a spatial model

As with our simpler, non-spatial models, we can start to specify our model using the same
functions as previously - i.e. population, except this time we actually incorporate the map
data.

european population
eur <- population(
name = "eur", time = 6000, N = 2000,
polygon = europe, map = map

)
check it by plotting!
plot_map(eur)
anatolian population
ana <- population(# Anatolian pop
name = "ana", time = 6000, N = 3000,
center = c(34, 38), radius = 500e3, polygon = anatolia, map = map

) %>%
expand_range(# expand the range by 2.500 km

by = 2500e3, start = 5000, end = 3000, overlap = 0.5,
polygon = join(europe, anatolia)

)

Note that the arguments map and polygon allow us to specify the map and polygon we have
already defined - it is these arguments which give our population its spatial rooting.

With this done, we can now replot these polygons and you will see we have defined the ranges
of the populations within the polygons - here they are explicitly bounded to the landscape.
We will see why this is important shortly.

10

plot_map(ana)
plot both together
plot_map(eur, ana) # showing an expansion into europe

With our populations defined, we can also set out some gene flow events. We will do this
exactly the same way we did with our non-spatial model earlier.

this will not work
gf <- gene_flow(from = ana, to = eur, rate = 0.1, start = 5000, end = 4000, overlap = T)
this will
gf <- gene_flow(from = ana, to = eur, rate = 0.1, start = 3000, end = 2000, overlap = T)

The main difference here however is that we have now added an overlap argument. This
is basically a requirement that populations must spatially overlap in order to to exchange
genes.

With this done, we can then compile our model. The principle here is the same as with our
non-spatial model but with some additional arguments. We will learn about these after we
have run the command. Also, ensure population names are correct!

compile model
model_dir <- paste0(tempfile(), "_tutorial-model")

model <- compile_model(
populations = list(eur, ana), # populations defined above
gene_flow = gf, # gene-flow events defined above
generation_time = 30,
resolution = 100e3, # resolution in meters per pixel
competition = 130e3, mating = 100e3, # spatial interaction in SLiM
dispersal = 700e3, # how far will offspring end up from their parents
path = model_dir

)

plot_model(model, proportions = T) # to check

So what additional arguments have we added here that differs from our previous model com-
pliation in the non-spatial examples?

• Firstly we have the resolution argument. This is simply the resolution of the map to
simulate on and how much a single pixel represents. Here we have set it to 100,000 units.

• Next we have competition - this is the maximum distance between two individuals
where they can influence each others fitness via competition. Here it is set to 130,000

11

which basically menas individuals influence each other only if the occur right next to one
another on the map.

• We also have mating - this sets the mating choice distance, i.e. the maximum distance
an individual will find a mate over; set to 100,000 here, it means individuals look for
mates in close proximity.

• Last we have dispersal which is fairly self-explanatory as dispersal distance. In the
context of our model, it determines how far an individual can move before contributing
to next generation.

Note that we also specify a path to set a model directory, just so we can look at the files SLiM
writes to the directory should we need to.

Finally we use plot_model to make sure the model is doing what we expect. If we are satisfied
with this, we can now run it using slim. Note that this is a large difference from our non-
spatial models which used msprime. SliM is a forward in time simulator which allows it to
incorporate selection and spatial dynamics. It is extremely powerful and I would strongly
recommend you investigate it in more detail!

However one disadvantage of SLiM is that it is slower than msprime - this menas our simulation
will take a bit longer to complete… but not too long!

set locations file
locations_file <- tempfile(fileext = ".gz")
run the simulations
ts <- slim(model, sequence_length = 1000, recombination_rate = 0, method = "batch",

locations = locations_file)
look at the tree sequence
ts

And with that, we’re done. Hopefully this has given you a taste of what is possible with
slendr. There is so much more you could do and many ways to extend and expand these
models. It is well worth spending some time with this excellent R package!

Optional extra - animating your model

This actually doesn’t work on our RStudio Server but it should work locally. This is just an
optional example that allows you to see some of the ways slendr allows you to explore your
simulations and models.

animate the model
animate_model(model = model, file = locations_file, steps = 50, width = 700, height = 400)

12

https://messerlab.org/slim/

	Introduction - slendr
	Setting up
	A simple non-spatial simulation with two populations
	Running a simulation
	Processing simulations - a simple example

	A simple simulation pipeline
	Adding to the model: gene flow
	Adding to the model: resizing a population

	Spatial models
	Setting up the spatial context
	Building a spatial model
	Optional extra - animating your model

